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Abstract

Two-photon microscopy in combination with novel fluorescent labeling
techniques enables imaging of three-dimensional neuronal morphologies in
intact brain tissue. In principle it is now possible to automatically recon-
struct the dendritic branching patterns of neurons from 3D fluorescence
image stacks. In practice however, the signal-to-noise ratio can be low,
in particular in the case of thin dendrites or axons imaged relatively deep
in the tissue. Here we present a nonlinear anisotropic diffusion filter that
enhances the signal-to-noise ratio while preserving the original dimensions
of the structural elements. The key idea is to use structural information
in the raw data — the local moments of inertia — to locally control the
strength and direction of diffusion filtering. A cylindrical dendrite, for
example, is effectively smoothed only parallel to its longitudinal axis, not
perpendicular to it. This is demonstrated for artificial data as well as for
in vivo 2-photon microscopic data from pyramidal neurons of rat neocor-
tex. In both cases noise is averaged out along the dendrites, leading to
bridging of apparent gaps, while dendritic diameters are not affected. The
filter is a valuable general tool for smoothing cellular processes and is well
suited for preparing data for subsequent image segmentation and neuron
reconstruction.
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1 Introduction

Two-photon laser scanning microscopy [1] has become a principal technique for
high-resolution fluorescence imaging in various biological tissues because it pro-
vides intrinsic optical sectioning and exceptional depth penetration (for reviews
see [2] [3] [4]). Imaging depths in the cortex of more than 500 micrometers are
now routinely achieved and image acquisition from one millimeter inside mouse
neocortex has been demonstrated recently [5]. Combined with techniques for la-
beling individual neurons or sparse populations of neurons, e.g. dye loading via
intracellular pipettes [6] [7] or the expression of fluorescent proteins [8] [9] [10],
2-photon microscopy can resolve neurons with high resolution in vivo, i.e. within
the intact brain of living animals [6] [11]. Thus, 3D-fluorescence images of neu-
rons can be obtained including their entire dendritic morphology within their
native environment.

These advances in imaging technology are prerequisites for the automatic recon-
struction of neuronal morphologies. An automatic reconstruction would allow
fast, high-throughput determination of characteristic anatomical features, for
instance the dendritic branching pattern of different neuronal cell types. This
is in contrast to standard manual reconstruction techniques, which are time-
consuming and highly dependent on the experience of the human anatomist [12].
They also suffer from scaling problems due to shrinkage in fixed tissue. Auto-
matic reconstruction would furthermore help to establish large databases of
neuronal morphologies for biophysical modeling of cellular and neural network
signal processing.

One of the major obstacles for developing an automatic reconstruction algo-
rithm is the noise inherent in low-level fluorescence images. For example, us-
ing 2-photon microscopy for in vivo imaging, both excitation light and fluores-
cence light are increasingly scattered with imaging depth, causing a reduction in
signal-to-noise ratio and making it difficult to fully resolve thin, weakly fluores-
cent neural processes (Figure 1A). As a result, simple thresholding procedures
for image segmentation might erroneously insert gaps into dendritic branches,
preventing the reconstruction of a fully connected dendritic tree. Therefore,
pre-processing of the raw fluorescence data in order to increase the signal-to-
noise ratio while preserving dendritic structure is an essential prerequisite for
automatic segmentation and subsequent morphological reconstruction.

One way to pre-process the raw data is filtering. A wide range of filters exist in
image processing. The most basic filters calculate an average brightness value
in a region around a central voxel. Other, more sophisticated filters use spectral
analysis to extract signals within a defined bandwidth, such as low- or high-pass
filters. Both methods show a close connection to the theory of partial differen-
tial equations [13]. Actually the well-known Gaussian blur is a perfect low pass
filter [14]. But none of these methods are sensitive to the local structure of the
processed data.

One of the first approaches to include information about the data into the fil-
ter was made by the direction-pyramidal decomposition method [15]. A more
general way to take the data structure into account is the use of diffusion filters
which have a long tradition in image processing [13]. They have mostly been
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used as convolution filters like Gaussian blurring. Nonlinear diffusion filters
were first used by Perona and Malik in 1987 [16]. Since then many specific
filters have been used to address a wide range of problems. For instance, an
anisotropic diffusion filter controlled by local properties of the data was used by
Lenzen [17] to reconstruct DNA structures.

In our case the filter has to prepare the data for segmentation. The filter-
ing process aims to (1) separate noise and signal, (2) close apparent gaps in
the structure, and (3) preserve dendritic diameters. For this purpose we de-
signed an anisotropic diffusion filter which is now implemented in our Software
Toolbox, NEURA (NEUron Reconstruction Algorithm). Here, we present this
diffusion filter designed specifically for 3-dimensional data of nerve cells. The
filter is tuned to delete disturbances (remove noise) and to bridge open struc-
tures while preserving dendritic diameters. In this respect, it performs much
better than Gaussian smoothing (see Figure 1 for a first impression). The pri-
mary goal of our algorithm is to facilitate automatic reconstruction of neuronal
morphology, for example in order to import them into the NEURON simulation
environment [18] for in silico experiments.

2 Material and Methods

2.1 Linear isotropic diffusion and Gaussian blur

Linear isotropic diffusion is described by the partial differential equation (pde):

∂tu(x, t) = ∆u(x, t), x ∈ R
n (1)

u(x, 0) = u0(x) on R
n (2)

The solution tends to zero for t → ∞. In image processing the time t is an
artificial parameter. In case of linear diffusion the filter makes sense only if the
time is limited to a finite value as can be seen comparing linear diffusion with
a simple Gaussian blur. Gaussian blur or Gaussian smoothing is an excellent
low-pass filter in image processing. It attenuates high frequencies in a monotone
way [14]. The close connection between linear diffusion and Gaussian blur gives
a deeper understanding of the filter process.
Let a grey-scale image u be represented by a real-valued mapping u0(x) ∈
L1(Rn). The linear diffusion process (1) can be solved analytically for any time
t > 0 [19]:

u(x, t) =

∫

Rn

u0(y) ·
1

(4πt)
n
2

e−
(x−y)2

4t dy. (3)

The Gaussian smoothing of u0 is described by:

u(x, σ) = (u0 ∗ Gσ)(x) =

∫

Rn

u0(y) ·
1

(2πσ2)
n
2

e−
(x−y)2

2σ2 dy. (4)

Apparently the time t has the same effect as the blurring parameter σ (that
means filtering an image stack with linear diffusion t = 2.0 is the same as using
a Gaussian blur with σ2 = 4.0). For finite times a linear diffusion filter yields a
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smoothing of the picture, which is desirable to suppress noise on large homoge-
neous faces. On distinct structures like sharp edges, however, isotropic diffusion
leads to undesirable blurring of the structure as illustrated in the examples
below.

2.2 Nonlinear anisotropic diffusion

To avoid broadening of edges, while preserving the smoothing of uniform sur-
faces, we need an anisotropic diffusion operator which leads to isotropic diffusion
on surfaces, but avoids cross-diffusion at sharp edges. This implies that the op-
erator (see equation 1) needs to depend on the structure of the image, i.e. it
must be nonlinear. In 1987, Perona and Malik [16] introduced such a non-
linear operator using the gradient of the data to control the diffusion. Their
algorithm was designed specifically to preserve edges with diffusion occurring
mainly perpendicular to the gradient of the image data in order to enhance
edges in 2D. More recent results using a gradient-controlled approach can be
found in [20], [21].

Mathematically speaking modeling a (nonlinear anisotropic) diffusion pro-
cess means to solve the following boundary value problem:

∂tu = ∇ · (D(u) · ∇u) on R
+ × Ω

u(x, 0) = u0(x) on Ω̄

(D(u) · ∇u) · ~n = 0 on R
+ × ∂Ω

(5)

with the permeability tensor D(u). In the case of D being the identity this is
the linear isotropic diffusion, which we have already seen in (1). The choice of
the tensor D(u) is crucial for the performance of the filter. Note that time is no
longer just a blurring parameter. Because of the nonlinearity D(u) the solution
does not necessarily tend to zero for t → ∞, see [21]. Instead a steady state
solution of the equation might exist. To choose an appropriate permeability
tensor D(u) we need to extract structural information from the raw grey value
data u(x, t).

2.3 Structure detection

Fluorescence images often are too noisy to use a gradient criterion to control
the diffusion direction. More information is needed to reliably detect the object
structure. In the case of filtering cellular processes, e.g., neuronal dendrites, we
would like to use strong diffusion parallel to the main axis of the dendrite but
not perpendicular to it. Thus we have to find a way to detect the axis of the
dendrite locally. Motivated by Lenzen and Rumpf [17] we decided to use the
moments of inertia.

2.3.1 Moment of inertia

To determine the local structure of the data in a three-dimensional image stack
we consider the grey value function as a density function of a real body. Then we
can calculate the (local) moments of the virtual body, by choosing an integration
volume Bδ(x0) around the voxel of interest. The parameter δ represents the size
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of the integration volume and is referred to as ’scanning range’ [22]. The local
moments are defined by:

Mass

M0(x0) =

∫

Bδ(xo)

u(x)dx, (6)

Center of Mass

M1(x0) =
1

M0(x0)

∫

Bδ(xo)

u(x)xdx, (7)

Moment of inertia

M2(x0) =

∫

Bδ(xo)

u(x)(x − M1(x0)) ⊗ (x − M1(x0))dx. (8)

The eigenvectors of the moment of inertia are the main axes of inertia. The
eigenvalues contain information about the spatial structure. The size of the
integration volume, the scanning range, is a critical parameter (see below).

2.3.2 Example

The eigenvectors and eigenvalues of the moment of inertia of a hexahedron (see
Figure 2) can easily be calculated. The tensor calculated at the origin is:

M2(x) =
1

12





a3bc 0 0
0 ab3c 0
0 0 abc3



. (9)

The corresponding eigenvectors and the eigenvalues are given by:

V1(0) =





1
0
0



, V2(0) =





0
1
0



, V3(0) =





0
0
1



, (10)

α1 =
1

12
a3bc, α2 =

1

12
ab3c, α3 =

1

12
abc3 (11)

2.3.3 Geometry classification

Following Lenzen [17] we define the following variables to quantify the size of
the eigenvalues:

c1 =
α1 − α2
∑

αi

, c2 =
2(α2 − α3)

∑

αi

and c3 =
3α3
∑

αi

, (12)

the αi are sorted by α1 > α2 > α3.

Remark 1 The ci in equation (12) are normalized in the following way:
∑

ci =
1 and 0 ≤ c1, c2, c3 ≤ 1.

Consequently, the ci can be visualized by a state triangle, see Figure 3. A high
value of c1 means that the local structure resembles a cylinder, a high value of
c2 a plane and a high value of c3 an isotropic structure. The parameters ci can
be further used for geometry classification as shown in the following example.
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2.3.4 Example

We calculate the eigenvectors, eigenvalues and the ci for the structure from
Figure 4 in the voxel next to the gap. The integration volume is plotted around
the voxel.

scanning range δ = 3 δ = 5 δ = 7 δ = 9 δ = 11

c1 0.00 0.00 0.23 0.75 0.84

c2 0.53 0.00 0.00 0.00 0.00

c3 0.47 1.00 0.77 0.25 0.16

DEV y,z x,y,z x x x

Table 1: Dependence of the ci on the integration size δ in pixel

Table 1 shows how the values of c1, c2 and c3 change according to the integra-
tion size δ. The dominating eigenvector (DEV) changes when the integration
size grows and finally they converge as can be seen from Table 1. For small
integration volumes the algorithm tends to detect an isotropic structure(δ =
{3, 5, 7}) while for integration volumes large enough to reach over the gap(δ ≥ 9)
a cylindrical structure is identified. Therefore it is important to know the scale
of the structure to be detected. Consequently the algorithm can be tuned to
detect small structures or large structures. For example, for enhancing dendritic
branches we usually choose an integration size of 10 µm. For enhancement of
smaller structures such as dendritic spines a smaller scanning range of about
3 µm has to be used.

2.3.5 Construction of D(u)

We are now in a position to construct the permeability tensor D(u). We define
D(u) such that diffusion occurs only parallel to the axis of the tube, but not
perpendicular to it. The dominating eigenvector V1 of the moment of inertia
gives us the local main direction of the structure. So we separate the diffusion
direction ∇u into two, (∇u)p and (∇u)t, with (∇u)p · V1 = 0

Technically speaking this means to transform the vector ∇u into the eigenspace
of the diffusion tensor and multiply the first component with unity, the others
with a nearly-zero constant ε. So we finally set D from equation (5) to:

D(x, u) = B





1 0 0
0 ε 0
0 0 ε



BT (13)

with B = (V1, V2, V3) and ε > 0 (With Vi the eigenvectors. Compare with
equation 10). This means that the filter always causes diffuses into the direction
of the largest eigenvalue of the local tensor of inertia.

2.4 Numerical solution

2.4.1 Discretization and solver

In order to solve the partial differential equation 1 we use a semi-implicit dis-
cretization. For time discretization a simple Backward-Euler Scheme was used.
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The advantage of using an implicit method is the possibility of using larger time
steps without losing stability [23]. Starting from

∂tu = ∇ · (D(u)∇u) (14)

we obtain:
ut+1 − ut

τ
= ∇ ·

(

D(ut)∇ut+1
)

(15)

(with τ : time step size without unit). For spatial discretization a Finite-Volume
method was used (see [24]). Specifically to obtain ut+1

h,i , the discrete nodal value
assigned to voxel i, we solved the following equation:

ut+1
h,i = ut

h,i +
τ

|Ωi|





∑

j

ut+1
h,j

∫

∂Ωi

(

D(ut
h)∇ϕj

)

· ~n ds



 ∀Ωi. (16)

The Ωi are the control volumes surrounding each voxel, ϕj are standard bilinear
finite element basis functions.

The integral is approximated by a first order mid point rule. Finally we
solved the linear algebraic equation

(I − τA)ut+1
h = ut

h. (17)

with

aij =
1

|Ωi|

∑

k

(D(ut
h)∇ϕj(ipk)) · ~nk · |Sk|.

using a iterative solver. We used a Conjugated Gradient (CG) solver (see [25]),
which is a standard iterative solver for linear algebraic systems.

2.4.2 Computational effort

Because a simple CG solver is used without preconditioner the computational
complexity is O(n

3
2 ) in each time step. To keep the computational effort low

we implemented a special algorithm for the computation of the moments. We
calculate the moments by using a Fast Fourier Transform, which transforms the
convolution into a multiplication. Another important feature is the convergence
of the solver for the linear system. Table 2 shows the number of iterations and

τ = 0.2 τ = 0.6 τ = 1.0 τ = 3.0 τ = 5.0 τ = 10.0

Time [s] 71 111 131 230 300 408
Iterations 6 10 12 22 29 40
%̄ 0.0319 0.1344 0.2148 0.4304 0.5272 0.6201

Table 2: Convergence of CG Solver for a 1293 voxel image stack (With %̄: the
average convergence rate)

the time needed to solve the linear algebraic equations up to a defect reduction
of 10−8. The results show the typical increase of number of iterations with
increasing τ . However for our computation this increase is not relevant.
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2.5 In vivo 2-photon imaging

Two-photon imaging was performed as described in [26]. Rats were anaes-
thetized with urethane. A small (2 mm x 2 mm) craniotomy was made over
barrel cortex and the dura was removed. The craniotomy was covered with agar
(1-1.5%, type III-A, Sigma) in the following solution (in mM): 135 NaCl, 5.4
KCl, 1 MgCl2, 1.8 CaCl2, 5 HEPES. A glass coverslip was positioned over the
agar. This reduced motion of the cortex during recording and imaging.

Neurons were filled with the soluble fluorescent indicator Alexa 594 using the
whole-cell patch-clamp technique. Pipettes with 4-6 MΩ open tip resistance
were filled with the following intracellular solution (in mM): 135 K gluconate,
4 KCl, 10 HEPES, 10 Na2-phosphocreatine, 4 Mg-ATP, 0.3 Na-GTP, 0.2% bio-
cytin, 0.02 Alexa 594 (pH 7.2; 291-293 mOsm). Recordings were obtained blind,
as described in ref. [27].

Two-photon microscopy was performed using a custom-built microscope [26].
The specimen was illuminated with 840 nm light from a pulsed Ti:sapphire
laser with a repetition rate of 80 MHz and 100-150 fs pulse width (Mira 900,
Coherent). Excitation light was focussed onto the specimen using a 40x, NA
0.8 water immersion objective (Zeiss).

Emitted fluorescence was deflected by 680 nm LP dichroic mirror and de-
tected with a photomultiplier tube (Hamamatsu). An infrared-blocking filter
(Calflex, Linos) and an emission filter (HQ 610/75M, Chroma) were used in
the detection pathway. Scanning and image acquisition were controlled using
custom software (R. Stepnoski and M. Müller, Lucent Technologies, New Jersey
and MPImF, Heidelberg).

3 Results

3.1 Testing the filter on artificial data

We designed a simple data stack containing a Y-like structure to test how the
filter works under controlled conditions. In Figure 5A one slice of this 653 voxel
data stack is illustrated. The Y has three gaps, each of them being three voxels
wide.

We applied the anisotropic diffusion filter to this data set, with a scanning
range of 10 voxel (Figure 5B). As expected the filter preserved the diameters of
the Y branches but filled in the gaps. For comparison we also applied a simple
isotropic diffusion to the same data set (Figure 5C). Although the linear filter
closed the gaps similar to the anisotropic filter, the diameters of the branches
were severely broadened. Because of the enlargement of the structure and the
conservation of the mean grey value the peak signal level of the isotropically
filtered image is reduced compared to the anisotropic case.

To further quantify the differences between anisotropic and isotropic filter-
ing, we measured the spatial intensity profiles parallel and perpendicular to one
branch (Figure 5D,E). Broadening of this structure was analyzed by calculat-
ing the full width at half maximum (FWHM) for the raw data set, and for
the anisotropically and isotropically filtered data set, respectively (using linear
interpolation). The anisotropic filter maintained the half width of the branch
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(FWHMraw = 6, FWHManisotropic = 5.84, measured in pixels). In contrast
the FWHM was increased with linear filtering (FWHMgauss = 6.91.). Because
of the step-like nature of the artificial data the anisotropic diffusion even caused
a slight reduction of the FWHM. The spatial profiles parallel to the branch
demonstrate how both filters fill the gap in nearly the same way (Figure 5E).
This is expected because along detected linear structures anisotropic diffusion
and Gaussian blurring convolve the data nearly equally.

3.2 Testing the filter on 2-photon images

We next applied the anisotropic diffusion algorithm to 3D fluorescence im-
age stacks of pyramidal neurons in rat neocortex obtained using 2-photon mi-
croscopy [6]. Neurons were filled with a fluorescent dye via the whole-cell patch
pipette. The data typically consisted of several hundreds of slices taken at 2µm

focal increments, each consisting of 256*256 pixels (8-bit depth). A maximum
intensity side projection of a raw data set is shown in Figure 6A. In addition
two example slices from different focal planes are shown (Figure 6B,C) to illus-
trate how noisy the raw images are. In particular, thin basal dendrites close to
the soma are difficult to resolve. Following anisotropic diffusion the signal-to-
noise ratio was improved and the thin dendrites can easily be separated from
background (Figures 6D,E,F).

To gain an impression of how the filter works we again compared the filter
result to the Gaussian blur (Figure 6G,H,I; σ = 2.8 voxel). The difference
between isotropic and anisotropic filtering is particularly evident at the basal
dendrites. After Gaussian filtering it is nearly impossible to see thin dendrites in
slices deep inside the tissue, whereas the anisotropic diffusion further enhances
the signal-to-noise ratio of these fine structures.

For automatic reconstruction of the dendritic tree it is very important how
dendritic diameters are affected by the filter. To quantify the diameters we again
measured the FWHM of seven dendrites of different sizes. Some of them were
parallel to the coordinate axis, some were oblique (see Figure 7). The effects
of these filters are shown in Table 3. The anisotropic filter has little effect on
dendritic diameter (on average they shrink by a factor of 0.92±0.45) whereas
Gaussian blurring almost doubles the diameter on average (expansion by a factor
of 1.78±0.78). In Figure 9A the (normalized) signal profile of dendrite number
5 is shown.

We next examined whether the filter bridges gaps in 2-photon microscopic
data. Therefore we first enlarged one slice of the data set and measured the
signal profile along one dendrite. In Figure 8A the same raw data as in Figure
6 are shown on an expanded scale. Figure 8B shows the data after anisotropic
filtering. The box indicates the areas which are presented in Figures 8C,D.
In Figure 8C there are discontinuities in the dendritic branch as bright pixels
are separated by dark pixels. After anisotropic filtering these discontinuities
are closed (see Figures 8D, 9B). The filter effect is clearer when looking at
a projection. Figures 8E,F are maximum intensity projections of 10 slices.
Dendrites which were difficult to follow in the raw data set are easy to find in
the filtered data, for instance, the dendrite in the upper left corner.
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dendrite 1 2 3 4 5 6 7 mean s.d.

raw 1.45 0.65 2.15 1.25 1.3 2.05 2.3
filtered 1.35 1.25 1.55 1.0 0.95 1.35 1.5
Gauss 2.1 2.25 2.95 2.3 2.35 2.8 2.65
f/raw 0.93 1.92 0.72 0.80 0.73 0.66 0.65 0.92 0.45
G/raw 1.45 3.46 1.37 1.84 1.81 1.37 1.15 1.78 0.78

Table 3: Changes in diameter (FWHM) after anisotropic diffusion filtering or
Gaussian blurring compared to raw size (in µm). f/raw is the ratio of the
FWHM after anisotropic diffusion to the raw FWHM, and G/raw is the ratio
of the FWHM after Gaussian blur to the raw FWHM. Seven different dendrites
have been evaluated.

3.3 Application to binary data

One of the purposes of the filter is to preprocess the data for segmentation of
objects. Even with this preprocessing some gaps may remain after a segmenta-
tion process. In this case it is convenient to apply the anisotropic diffusion filter
a second time on the segmented (i.e. binary) data. An example application of
the filter on binary data is shown in Figure 10. The filter bridges the remaining
gaps while preserving the diameter of the dendrites. Combining the filter with
a sophisticated segmentation and reconstruction algorithm will yield results as
shown in Figure 11. The automatically reconstructed morphology of a layer 2/3
pyramidal neuron was read into and visualized using the NEURON simulation
environment [18].

4 Discussion

We have presented a method for filtering 2-photon microscopy data of neuronal
morphologies. The method is based on anisotropic diffusion in three dimensions.
The key idea of the algorithm is the use of the local moments of inertia to reli-
ably detect the dimensionality (isomorph, planar or linear) and the orientation
of the morphological structures, particularly of dendrites. The filter is controlled
by adapting the diffusion tensor in a way to produce smoothing along but not
perpendicular to the structure. We have demonstrated that anisotropic filtering
preserves dendritic diameters in a set of artificial test data and in 2-photon mi-
croscopic images of neocortical neurons. In addition it bridges apparent gaps in
images of dendrites, which result from poor signal-to-noise ratio, by smoothing
along the dendritic axis similar to a Gaussian blurring filter. It should be noted
that dendrite diameters can only be resolved accurately if they are larger than
the optical resolution of the microscope system. This is a fundamental limita-
tion, which is not overcome by anisotropic diffusion filtering. For thin dendrites
the diameters obtained therefore represent an overestimate of the true diameters
because they are convolved with the point spread function of the microscope.
However, in any case anisotropic diffusion filtering does not introduce an addi-
tional systematic bias in dendritic diameters.
The anisotropic diffusion filter was implemented using a semi-implicit scheme
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for time discretization and a Finite-Volume method for spatial discretization.
The semi-implicit time scheme is advantageous since each time step can be used
with a larger time step size without losing stability [23]. In contrast, explicit
schemes for time disretization are limited in the time step size by the Courant-
Friedrich-Levy Condition [23]. Smaller time steps have to be used so that the
number of time steps required to achieve the same filtering increases. As a result
the time to solution is typically longer for an explicit scheme compared to an
implicit scheme. Due to the complexity of the filtering algorithm, anisotropic
diffusion filtering of large data sets is time consuming. But in some parts of
the algorithm parallelization is possible, for instance for the calculation of the
tensor of inertia or the assembly of the stiffness matrix (see Equation 17). In
the future, such parallelization will substantially reduce the computation time.
Anisotropic diffusion filtering offers a convenient way to enhance the quality
of fluorescence image stacks without using information about the microscope
system used for imaging. The signal-to-noise ratio is enhanced such that the
differentiation between foreground and background (segmentation) can easily
be done by a simple local thresholding algorithm. The smooth signal profile
along structures and the large gradient between structure and background al-
low even the detection of small dendrites several hundred µm deep inside the
cortex. Anisotropic diffusion filtering therefore represents an excellent starting
point for automatic reconstruction of neurons. In addition, filtering and seg-
mentation can be iterated since the filter does not depend on the depth of the
data. It works both on grayscale and on binary data.
We are currently developing a new software toolbox, NEURA, designed for auto-
matic reconstruction of neuronal morphologies, which includes the anisotropic
diffusion for data preprocessing. Preliminary results indicate that the com-
bination of the anisotropic filter with a sophisticated segmentation algorithm
can deliver a good restoration of the neuron shape. Even fine dendrites can
be tracked using graph tracking algorithms, yielding a reconstruction of the
branching pattern of the neuron. Here the next challenge will be to apply the
reconstruction algorithm to the finer axonal arborisation of cortical neurons.
The overall algorithm for neuron reconstruction implemented in NEURA will
be discussed in a forthcoming paper.
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6 Figures and Figure Legends

A B C

10 µm

Figure 1: Comparison of the anisotropic diffusion filtering with Gaussian blur.
(A) One slice of a data stack from a 2-photon scan of a pyramidal cell in layer
2/3 of rat somatosensory cortex in vivo. This slice is at a depth of 280 µm

inside the brain. The loading pipette is visible at the top of the image next to
the cell body. (B) Filtering with anisotropic diffusion. The filter was used with
two time steps, a time step size of τ = 2.0 and a scanning range of δ = 10 µm.
Figure (C) shows the data after Gaussian blur with σ = 2.8 ≈ 2

√

(2) (measured
in voxel).
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a
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V1

V2
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Figure 2: Direction of the eigenvectors of the moment of inertia of a hexahedron.
The structure is assumed to be solid with a constant density function. a,b,c :
the three sides, V1, V2, V3 : the main axes of inertia.

c1 = 1

c2 = 1c3 = 1
c1 = 0

c2 = 0 c3 = 0

Figure 3: Visualization of the normalized values ci using a state triangle.
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δ

Figure 4: A simple linear structure to analyze the behavior of the eigenvalues
and ci respectively to the scanning range δ. The structure is again assumed
to be solid with a constant density value. The structure is three voxel high (y
direction) and three voxel deep (z direction).
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Figure 5: Test data stack. A simple test data stack with a Y-like structure
was created to analyze the behavior of the filter. The structure is assumed
to be solid with a density value of 1. The diameter of the Y-like structure is
three voxels. The background is defined with density value zero. The structure
has three gaps, each of which is three voxels wide. (A) shows one slice of
the initial data. The red lines mark the area where the data for the signal
profiles shown in (D,E) were taken from. (B) nonlinear anisotropic diffusion,
(C) Linear isotropic diffusion. The normalized signal profiles demonstrate the
effect of the anisotropic filter and the Gaussian smoothing. (D) shows the signal
perpendicular to the branch. Anisotropic filtering conserves the signal profile.
However, Gaussian blurring distorts the signal structure. Sharp edges are lost.
(E) illustrates the signal along the branch. Both filters fill the gap in nearly the
same way.
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Figure 6: A layer 2/3 pyramidal neuron was imaged using 2-photon microscopy.
The data stack consists of 216 slices each 2 µm thick. Each slices has 2562

pixels. One pixel is 1 µm in x direction and 1 µm in y direction. (A) shows
a sagittal view of a maximum intensity projection of the raw data. B,C show
two slices of the raw data. The loading pipette is visible on the left side of the
images. (D,E,F) show the same data after anisotropic diffusion filtering. The
broken red lines in (D) indicate the depth where the two slices shown are taken
from. In (G,H,I) a Gaussian blurring is applied to the raw data.
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Figure 7: Close-up views of dendritic branches. The conservation of the diame-
ter of the dendrites was one of the major goals for the design of the filter. In this
Figure the dendrites which were used to measure the change in the diameter
are shown. See table 3 for results of the measurement of the full width at half
maximum.
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Figure 8: Zooming into one slice illustrates further how the filter enhances the
quality of the data. One slice of the raw data from Figure 6 is presented in
(A). The red arrows mark the line where the signal profiles along the dendrite
(see Figure 9B) were measured. The blue box indicates the area from which
panel (C) and panel (D) respectively where taken from. (B) shows the data
after nonlinear anisotropic diffusion filtering. (C) and (D) respectively show the
initial data (filtered data) at higher magnification. In (E) and (F), maximum
intensity z projections of ten slices of the raw and the filtered data respectively
are illustrated.
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Figure 9: Conservation of dendritic diameters and closure of gaps in the 2-
photon fluorescence data stack. The plot in (A) shows the normalized signal
profile perpendicular to dendrite 5 in Figure 7. Again the anisotropic diffusion
filtering conserves the signal profile whereas the Gaussian blurring causes a
widening of the signal. In (B) the closing of a gap is demonstrated by showing
the (normalized) signal along the dendrite marked in Figure 8A by red arrows.
There is nearly no difference between anisotropic diffusion and blurring.
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Figure 10: Nonlinear anisotropic filter applied to binary data. During the recon-
struction process filtering on binary data is needed. These figures illustrate how
the filter can be used on binary data, too. The initial binary data was obtained
from the same raw data as used in Figure 6. (A) shows the initial binary data.
The data was filtered by nonlinear anisotropic diffusion with τ = 2.0, two time
steps and δ = 10 µm. The result is shown in (B). The same region as in Figure
6 was chosen for analyzing the data at higher magnification (C,D). The gaps in
(C) are closed in (D). The diameter is nearly unchanged.
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Figure 11: Automatic reconstruction of neuronal morphology from the filtered
2-photon fluorescence data. To illustrate how the filter facilitates automatic
dendritic reconstruction, we filtered, segmented and automatically reconstructed
the morphology of a layer 2/3 pyramidal neuron. The morphology of soma and
dendrites is presented using the simulation program NEURON.
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